Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(2): 840-850, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31465583

RESUMO

Climate-driven sea ice loss has led to changes in the timing of key biological events in the Arctic, however, the consequences and rate of these changes remain largely unknown. Polar bears (Ursus maritimus) undergo seasonal changes in energy stores in relation to foraging opportunities and habitat conditions. Declining sea ice has been linked to reduced body condition in some subpopulations, however, the specific timing and duration of the feeding period when bears acquire most of their energy stores and its relationship to the timing of ice break-up is poorly understood. We used community-based sampling to investigate seasonality in body condition (energy stores) of polar bears in Nunavut, Canada, and examined the influence of sea ice variables. We used adipose tissue lipid content as an index of body condition for 1,206 polar bears harvested from 2010-2017 across five subpopulations with varying seasonal ice conditions: Baffin Bay (October-August), Davis Strait and Foxe Basin (year-round), Gulf of Boothia and Lancaster Sound (August-May). Similar seasonal patterns were found in body condition across subpopulations with bears at their nadir of condition in the spring, followed by fat accumulation past break-up date and subsequent peak body condition in autumn, indicating that bears are actively foraging in late spring and early summer. Late season feeding implies that even minor advances in the timing of break-up may have detrimental effects on foraging opportunities, body condition, and subsequent reproduction and survival. The magnitude of seasonal changes in body condition varied across the study area, presumably driven by local environmental conditions. Our results demonstrate how community-based monitoring of polar bears can reveal population-level responses to climate warming in advance of detectable demographic change. Our data on the seasonal timing of polar bear foraging and energy storage should inform predictive models of the effects of climate-mediated sea ice loss.


Assuntos
Mudança Climática , Ursidae , Animais , Regiões Árticas , Canadá , Camada de Gelo , Nunavut , Estações do Ano
2.
PLoS One ; 13(1): e0191631, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29360849

RESUMO

Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.


Assuntos
Carbono/metabolismo , Camada de Gelo , Água do Mar , Ursidae/metabolismo , Animais , Regiões Árticas , Ecossistema
3.
Ecol Evol ; 6(16): 6005-18, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27547372

RESUMO

Polar bear (Ursus maritimus) subpopulations in several areas with seasonal sea ice regimes have shown declines in body condition, reproductive rates, or abundance as a result of declining sea ice habitat. In the Foxe Basin region of Nunavut, Canada, the size of the polar bear subpopulation has remained largely stable over the past 20 years, despite concurrent declines in sea ice habitat. We used fatty acid analysis to examine polar bear feeding habits in Foxe Basin and thus potentially identify ecological factors contributing to population stability. Adipose tissue samples were collected from 103 polar bears harvested during 2010-2012. Polar bear diet composition varied spatially within the region with ringed seal (Pusa hispida) comprising the primary prey in northern and southern Foxe Basin, whereas polar bears in Hudson Strait consumed equal proportions of ringed seal and harp seal (Pagophilus groenlandicus). Walrus (Odobenus rosmarus) consumption was highest in northern Foxe Basin, a trend driven by the ability of adult male bears to capture large-bodied prey. Importantly, bowhead whale (Balaena mysticetus) contributed to polar bear diets in all areas and all age and sex classes. Bowhead carcasses resulting from killer whale (Orcinus orca) predation and subsistence harvest potentially provide an important supplementary food source for polar bears during the ice-free period. Our results suggest that the increasing abundance of killer whales and bowhead whales in the region could be indirectly contributing to improved polar bear foraging success despite declining sea ice habitat. However, this indirect interaction between top predators may be temporary if continued sea ice declines eventually severely limit on-ice feeding opportunities for polar bears.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...